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Importance of Snow @

« Snow is a significant contributor to terrestrial freshwater supply
— Up to 80% of runoff in some Western states
» Vital resource for ~billion people worldwide
— Not exactly sure how much snow is out there
— Difficult to measure; significant uncertainty;
* Global warming — rising snow line
— reduced virtual reservoir; accelerated hydrologic cycle;

after

before

Runoff o

Time
ESTO




NASA Decadal Survey # %

» Global warming — rising snow line — reduced virtual reservoir

» Goal is to improve snow mass estimation at regional / continental scales
— No dedicated snow mission
— Water security — food+energy security — national security

TABLE S.1 Science and Applications Priorities for the Decade 2017-2027

Science and Applications Science and Applications Questions
Area Addressed by MOST IMPORTANT Objectives

Coupling of the Water (H-1) How is the water cycle changing? Are changes in evapotranspiration and

and Energy Cycles precipitation accelerating, with greater rates of evapotranspiration and thereby
precipitation, and how are these changes expressed in the space-time distribution of
rainfall, snowfall, evapotranspiration, and the frequency and magnitude of extremes
such as @ln_s and floods?
(H-2) How do anthropogenic changes in climate, land use, water use, and water
storage interact and modify the water and energy cycles locally, regionally and
globally and what are the short- and long-term consequences? -
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Satellite-derived Snow ‘“Information”

RADAR, O

NOTE: Optical imagery, thermal imagery, and gravimetry not considered in this study.




Research Objectives @/@3/

Science and mission planning guestions

1) What observational records are needed (in space and time) to
maximize terrestrial snow experimental utility?

2) How might observations be coordinated (in space and time) to
maximize this utility?

3) What is the additional utility associated with an additional
observation?

4) How can future mission costs be minimized while ensuring
Science requirements are fulfilled?
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Radiative Transfer Models (RTMs) @
—_— ]

—

Global land surface models lack
fidelity as required by RTMs e

.

.

>

Tb Observation Operator Multi-frequency,
Inputs from . .y : -
Snow Hydrology Model Microwave Emission Model Multi-polariztion
(a.k.a., Radiative Transfer) Brightness Temperatures
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atmosphere
T >
2-meters >
vegetation
Tski >
S > backscatter
snow >
> Oy
SWE >
> O
p(2) VvV
>
1(z) -
SLWC >
soil -
-
surf >
NASA Catchment Tb tl):z:r:rav:tel’? :I ()z%??tor Multi-frequency,
Land Surface Model M ' Multi-polariztion

Forman and Reichle, 2014;

Forman and Xue, 2016) Training Targets

(Koster et al., 2000)
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Spatiotemporal Variability @
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NASA Land Information System (LIS) @@

* Models land surface processes (including snow)
* Integrates satellite-based observational data products with land
surface modeling and data assimilation techniques

Kumar et al. (2006), Land Information System: An interoperable framework for high resolution land surface modeling,

Environmental Modeling and Software E 57..0

11




Trade Space Analysis Tool for Constellations (TAT-C) @@/

py Q
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« Explore trade-off between
engineering and science
 Field-of-View (FOV)?
 Platform altitude?
* Orbital configuration(s)?
« Single platform vs.
constellation?
* Repeat cycle?
* How do we get the most
scientific bang for our buck?

4-hour Radiometer Viewing in Polar Orbit (Ascending Overpasses Only, e.g.)
4-hour RADAR Viewing in Inclined Orbit (Descending Overpasses Only, e.g.)
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TAT-C: “Comb Viewing” via Single Platform
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Observing System Simulation Experiment (OSSE) @@
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Nature Run
Snow Depth & SWE
over North America

TAT-C
Permutation of
Orbit(s) + Sensor(s)

Sub-sample

Th, 0o, and dh

Synthetic Obs.

>

LIS + MERRA2

- model-based
representation
- best estimate

in space / time

- includes cost
estimate and risk analysis

Operators

- inject known
observation error

LIS Open Loop

LIS + GLDAS
- apply representative B.C. error
- no assimilation (a.k.a., Open Loop)
- with assimilation (merge with
observations from suite of sensors)

LIS Assimilation

Open Loop (i.e,, no assimilation)

\ Data Assimilation

Land Validation Toolkit (LVT)

- ——=>

>

(merge w/ synthetic obs.)

(B

Benchmark
evaluation against
“Nature Run”
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Data Assimilation via Ensemble Kalman Filter '

Radiometer, T} "
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Synthetic Snow Depth Retrieval Results % )

“Truth” OL DA
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Research Summary @/@3/
TR

 Global snow mission will require evidence of achievable
science via OSSE . . . or some other means

 NASA LIS provides “nature run” plus assimilation
framework

« TAT-C provides spatiotemporal sub-sampling of
observations, including cost estimates and risk
assessments

« Machine learning maps model state(s) into observation
space (i.e., T, and o)

« Snow OSSE is on-going . . . open to ideas + suggestions!
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Thank You!

Questions and/or
comments?

G570
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TAT-C Orbital Simulator
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Trade-off Space: Coverage vs. Resolution /@3/

< PV Y

A
-*2 FOV =15deg
- ——— FOV=30d
i OV - 45 deg « Explore trade-off between
5 engineering and science
\ « Field-of-View (FOV)?
3 « Platform altitude?

Total Number of Satellites [integer value] = ° Repeat CyC|e’7

* Single platform vs.

— A Altitude = 400 km Constel Iation?
£ Altitude = 700 km . . .
> Altitude = 1000 km  Orbital configuration(s)?
= * How do we get the most
E / scientific bang for our buck?

Instrument Elevation Angle [arbitrary units]
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Spatiotemporal Variability
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SVM Mathematical Framework (1 of 2) 4, ).

For parameters C' > 0 and ¢ > 0, the standard (primal) form is:

minimize
w, 4, €, &F

subject to

&6 20,i=1,2,...,m.

where m is the available number of 7}, measurements in time (for a
given location in space), z; is a T, measurement at time 4, and £ and

&" are slack variables.
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SVM Mathematical Framework (2 of 2) @@}/

Primal optimization is commonly solved in dual form as:

minimize 5 3" (o — a?) (a; - o) (6(x:) - 9(x))

subject to Z (a; — ) =0,
a; o €0,Cl,1=1,2,....m
where «; and o are Lagrangian multipliers, (¢(x;) - ¢(x;)) is the

inner dot product of ¢(x;) and ¢(x;), € is the specified error
tolerance, and C' is a positive constant that dictates a penalized loss

during training.
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